
Specification: 0001 Robin Bron
 August 2018

 JavaScript Styling

This document describes a set of rules for JavaScript source code. To apply
these rules, include the next paragraph near the beginning of the documentation
of the project or near the beginning of the generic README file of the project:

 The JavaScript source code in this project must adhere to the rules as
 described in FINWO/SPEC0001

Copyright Notice

 This document is licensed under a
 Creative Commons Attribution 4.0 International License

 You should have received a copy of the license along with this work. If not,
 see <http://creativecommons.org/licenses/by/4.0/>

Bron [Page 1]

SPEC 0001 JavaScript Styling August 2018

Table of contents

 1. Introduction ... 4
 1.1. Conventions ... 4
 2. Source file basics ... 4
 2.1. File name ... 4
 2.2. File encoding ... 4
 2.3. Special characters .. 4
 2.3.1. Whitespace characters .. 4
 2.3.2. Special escape sequences 4
 2.3.3. Non-ASCII characters ... 4
 3. Formatting ... 5
 3.1. Braces .. 5
 3.1.1. Control structures ... 5
 3.1.2. Non-empty blocks ... 5
 3.1.3. Empty blocks ... 5
 3.2. Indentation ... 5
 3.3. String literals ... 5
 3.4. Number literals ... 6
 3.5. Array literals .. 6
 3.6. Object literals ... 6
 3.7. Functions ... 7
 3.7.1. Function literals .. 7
 3.7.2. Arrow function literals 7
 3.7.3. Generator functions .. 7
 3.7.4. Parameters ... 7
 3.7.4.1. Default parameters 7
 3.7.4.2. Rest parameters ... 8
 3.7.5. Returns .. 8
 3.7.6. Spread operator .. 8
 3.8. Classes ... 8
 3.8.1. Constructors ... 8
 3.8.2. Fields ... 8
 3.8.3. ES5 class declarations 8
 3.8.4. Prototype manipulation 9
 3.8.5. Getters and setters .. 9
 3.9. This .. 9
 3.10. Disallowed features .. 9
 4. Naming .. 10
 4.1. Rules for all identifiers .. 10
 4.2. Rules by identifier type ... 10
 5. JSDoc ... 10
 5.1. General form .. 10
 5.2. Summary ... 10
 5.3. Description ... 11
 5.4. Tags .. 12
 5.4.1. JSDoc tag reference ... 12
 5.5. Line wrapping ... 13
 5.6. Top/file-level comments ... 13
 5.7. Class comments .. 13
 5.8. Enum and typedef comments 13
 5.9. Method and function comments 13
 5.10. Property comments ... 14
 5.11. Nullability ... 14
 5.12. Template parameter types .. 14

Bron [Page 2]

SPEC 0001 JavaScript Styling August 2018

 6. Policies .. 14
 6.1. Unspecified styling .. 14
 6.2. Deprecation .. 14
 6.3. Code not in Finwo Style .. 14
 6.3.1. Reformatting existing code 15
 6.3.2. Newly added code .. 15
 6.4. Local style rules .. 15
 6.5. Generated code ... 15
 6.6. Third-party code ... 15
 7. Informative resources ... 16
 8. Author information .. 17

Bron [Page 3]

SPEC 0001 JavaScript Styling August 2018

1. Introduction

 This document serves as the complete definition of the coding standards for
 source code in the JavaScript programming language as followed by finwo. A
 JavaScript source file is described as being in "Finwo Style" if, and only
 if, it adheres to the rules herein.

 Like other programming style guides, the issues covered span not only
 aesthetic issues of formatting, but other types of conventions or coding
 standards as well. However, this document focuses primarily on the
 hard-and-fast rules that we follow universally, and avoids giving advice that
 isn’t clearly enforceable (whether by human or tool).

1.1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 when, and only when,
 they appear in all capitals, as shown here.

2. Source file basics

 2.1. File name

 File names MUST be all lowercase and may include underscores (_) or dashes
 (-), but no additional punctuation. The extension MUST always be ".js".

 2.2. File encoding

 Source files MUST always be encoded according to the UTF-8 standard (See
 RFC3629).

 2.3. Special characters

 2.3.1 Whitespace characters

 Aside from the line-feed character, the ASCII (See RFC20) horizonal
 space character (0x20) is the only whitespace character that appears
 anywhere in a source files.

 2.3.2. Special escape sequences

 For any character that has a special escape sequence, that sequence
 SHOULD be used rather than the corresponding numeric escape sequence.
 Legacy octal escapes MUST NOT be used.

 2.3.3. Non-ASCII characters

 For the remaining non-ASCII characters, either the actual Unicode
 character or the equivalent hex or Unicode escape is used, depending
 only on which makes the code easier to read and understand.

Bron [Page 4]

SPEC 0001 JavaScript Styling August 2018

3. Formatting

 3.1. Braces

 3.1.1. Control structures

 Braces are REQUIRED for all control structures (i.e. if, else, for, do,
 while, as wel as any others). The first statement of a non-empty block
 MUST begin on its own line.

 Control structures SHOULD omit braces and be written on a single line
 if the both the statement and the control structure can be kept on a
 single line without wrapping when it improves readability.

 3.1.2. Non-empty blocks

 Braces follow the Kernighan and Ritchie style ("Egyptian brackets") for
 non-empty blocks and block-like structures.

 - No line break before the opening brace
 - Line break after the opening brace
 - Line break before the closing brace
 - Line break after the closing brace if that brace terminates a
 statement or the body of a function or class statement, or a class
 method. Specifically, there is no line break after the brace if it is
 followed by "else", "catch", "while", or a comma, semicolon, or
 right-prarenthesis.

 3.1.3. Empty blocks

 An empty block or block-like construct SHOULD be closed immediately
 after it is opened, with no characters, space, or line break in
 between, unless it is part of a multi-block statement.

 3.2. Indentation

 Each time a new block or block-like construct is opened, the indent
 increases by two spaces. When the block ends, the indent returns to the
 previous indent level. The indent level applies to both code and comments
 throughout the block.

 3.3. String literals

 Ordinary string literals SHOULD be delimited with single quotes (’) and
 MUST NOT span multiple lines.

 To prevent complex string concatenation, template strings (delimited with
 ‘) SHOULD be used. Template strings (delimted with backticks (‘)) MAY span
 multiple lines in which case they SHOULD adhere the indent level of the
 enclosing block if the whitespace does not affect functionality or
 increases the comlexity of the code.

Bron [Page 5]

SPEC 0001 JavaScript Styling August 2018

 3.4. Number literals

 Numbers may be specified in decimal, hexidecimal, octal or binary. Use
 exactly "0x", "0o" and "0b" prefixes, with lowercase characters, for hex,
 octal and binary respectively. Never include a leading zero unless it is
 immediately followed by "x", "o" or "b".

 3.5. Array literals

 Array literals SHOULD include a trailing comma whenever there is a line
 break between the final element and the closing bracket.

 The variadic Array constructor MUST NOT be used for creating a new array,
 unless used for allocating an empty array of a given length.

 Non-numeric properties on an array other than "length" or a Symbol MUST
 NOT be used. Use a Map or Object instead.

 Array literals MAY be used on the left-hand side of an assignment to
 perform destructuring (such as when unpacking multiple values from a
 single array or iterable). A final "rest" element MAY be included (with no
 space between the "..." and the variable name).

 Destructuring MAY also be used for function parameters (note that a
 parameter name is required but ignored). Always specify "[]" as the
 default value if a destructured array parameter is optional, and provide
 default values on the left hand side.

 Array literals MAY include the spread operator (...) to flatten elements
 out of one or more other iterables. The spread operator SHOULD be used
 instead of more awkward constructs with "Array.prototype". There is no
 space after the "...".

 3.6. Object literals

 A trailing comma SHOULD be used whenever there is a line break between the
 final property and the closing brace.

 While the Object constructor does not have the same problems as the Array
 constructor, the Object constructor MUST NOT be used to create a new
 object. Use an object literal instead.

 When writing an object literal, unquoted keys and quoted keys MUST NOT be
 used.

 Computed property names are allowed and are considered quoted keys (they
 MUST NOT be mixed with non-quoted keys) unless the computed property is a
 symbol. Enum values may also be used for computed keys, but should not be
 mixed with non-enum keys in the same literal.

 Methods SHOULD be defined on object literals using the method shorthand in
 place of a colon immediately followed by a function or arrow function
 literal to be consistent with class literals.

Bron [Page 6]

SPEC 0001 JavaScript Styling August 2018

 3.7. Functions

 3.7.1. Function literals

 Exported top-level functions MAY be defined directly on the exports
 object or else declared locally and exported separately. Non-exported
 functions are encouraged and should not be declared private. Functions
 MAY contain nested function definitions. If it is useful to give the
 function a name, it should be assigned to a local const.

 3.7.2. Arrow function literals

 Arrow function literals SHOULD be used instead of "function" literals
 whenever applicable, unless the code is easier to read and understand
 when not.

 The right-hand side of the arrow MUST be either a single expression or
 a block. Multiple expressions MAY NOT be concatenated into a single
 expression using commas when used as the only statement of an arrow
 function.

 3.7.3. Generator functions

 Generators enable a number of useful abstractions and MAY be used as
 needed. When defining generator functions, attach the "*" to the
 "function" keyword when present and separate it with a space from the
 name of the function. When using delegating yields, attach the "*" to
 the "yield" keyword.

 3.7.4. Parameters

 3.7.4.1. Default parameters

 Function parameters MUST be typed with JSDoc annotations in the
 JSDoc preceding the function’s definition,

 Parameter types MAY be specified inline, immediately before the
 parameter name. Inline and "@param" type annotations MUST NOT be
 mixed in the same function definition.

 Optional parameters SHOULD be indicated by using the equals operator
 to set a default value for that parameter, even if the default value
 should be undefined. Optional parameters indicated by a default
 value MUST include spaces on both sides of the equals operator, be
 named exactly like required parameters (i.e. not prefixed), use the
 "=" suffix in their JSDoc type and not use initializers that produce
 observable side effects. Optional parameters SHOULD come after
 required parameters.

 Use default parameter values sparingly. Prefer destructuring to
 create readable APIs when there are more than a small handful of
 optional parameters that do not have a natural order.

Bron [Page 7]

SPEC 0001 JavaScript Styling August 2018

 3.7.4.2. Rest parameters

 Use a rest parameter instead of accessing the special arguments
 variable. Rest parameters are typed with a "..." prefix in their
 JSDoc. The rest parameter MUST be the last parameter in the list.
 There is no space between the "..." and the parameter name. The rest
 parameter MUST NOT be named "arguments" or any other word which
 confusingly shadows built-in names.

 3.7.5. Returns

 Function return types MUST be specified in the JSDoc directly above the
 function definition.

 3.7.6. Spread operator

 Function calls MAY use the spread operator. The spread operator SHOULD
 be used in preference over Function.prototype.apply when an array or
 iterable is unpacked into multiple parameters of a variadic function.
 There MUST NOT be a space between the spread operator and the array or
 iterable.

 3.8. Classes

 3.8.1. Constructors

 Constructors are OPTIONAL for concrete classes. Subclass constructors
 MUST call "super()" before setting any fields or otherwise accessing
 "this", unless required to do so in order to acquite their goal.

 3.8.2. Fields

 All of a concrete object’s fields (i.e. all properties other than
 methods) MUST be set from within the constructor. Fields that are never
 reassigned SHOULD be annotated with "@const".

 Private fields SHOULD either be annotated with "@private" or have a
 Symbol as key. Fields MUST NOT be set on a concrete class’ prototype.

 3.8.3. ES5 class declarations

 While ES6 classes are preferred, there are cases where ES6 classes may
 not be feasible.

 Per-instance properties SHOULD be defined in the constructor after the
 call to the super class constructor, if a super class exists. Methods
 SHOULD be defined on the prototype of the constructor.

Bron [Page 8]

SPEC 0001 JavaScript Styling August 2018

 3.8.4. Prototype manipulation

 In ES6 class definitions, the prototype of the class SHOULD NOT be
 manipulated directly. Ordinary implementation code has no business
 manipulating these objects.

 Mixins and modifications of the prototypes of builtin objects SHALL NOT
 be used, unless part of framework code which otherwise would resort to
 even-worse workarounds to avoid doing so.

 3.8.5. Getters and setters

 The JavaScript getter and setter properties MUST NOT be used, unless
 part of data-binding frameworks where they MAY be used sparingly.

 3.9. This

 Only use the this builtin in class constructors and methods, or in arrow
 functions defined within class constructors and methods. Any other uses of
 this MUST have an explicit "@this" declared in the immediately-enclosing
 function’s JSDoc.

 The this builtin SHOULD NOT be used to refer to the global object, the
 context of an eval or the target of an event.

 3.10. Disallowed features

 The "with" keyword
 The "with" keyword MUST NOT be used. It makes your code harder to
 understand and has been banned in strict mode since ES5.

 Dynamic code evaluation
 The "eval" method and the "Function(...string)" constructor MUST NOT be
 used outside of code loaders. These features are potentially dangerous
 and simply do not work in CSP environments.

 Automatic semicolon insertion
 Always terminate statements with semicolons, except for function and
 class declarations.

 Non-standard features
 Non-standard features MUST NOT be used. This includes old features that
 have been removed, new features that are not yet standardized or
 proprietary that are only implemented in some JavaScript environments.
 These features are only allowed if the code being written is intended
 for only that environment.

 Wrapper objects for primitive types
 Never use the "new" keyword on primitive object wrappers nor include
 them in type annotations. The wrappers MAY be called as functions for
 coercing (which is preferred over using "+" or concatenating the empty
 string) or creating Symbols.

Bron [Page 9]

SPEC 0001 JavaScript Styling August 2018

4. Naming

 4.1. Rules for all identifiers

 Identifiers MUST use only ASCII letters, digits, underscores and the
 dollar sign.

 Give as descriptive a name as possible, within reason. Do not worry about
 saving horizontal space as it is far more important to make your code
 immediately understandable by a new reader. Do not use abbreviations that
 are ambiguous or unfamiliar to readers outside your project and do not
 abbreviate by deleting letters within a word.

 4.2. Rules by identifier type

 Package names ... kebab-case
 Class names ... UpperCamelCase
 Method names .. lowerCamelCase
 Enum names .. UpperCamelCase
 Constant names SCREAMING_SNAKE_CASE
 Non-constant field names lowerCamelCase
 Parameter names ... lowerCamelCase
 Local variable names lowerCamelCase
 Template parameter names SCREAMING_SNAKE_CASE

5. JSDoc

 5.1. General form

 JSDoc is a generic docblock (/**) with a body as defined here. JSDoc is
 either multi-line or single-line, where the single-line version MUST
 follow the parameter or field section of the multi-line version.

 There are many tools which extract metadata from JSDoc comments to perform
 code validation and optimization. As such, these comments MUST be
 well-formed.

 A JSDoc comment can contain the following sections, which are described in
 5.2. through 5.4.:
 - Summary
 - Description
 - Tags

 5.2. Summary

 The summary is a one-line string used to give an impression of the
 function of the documented element. This can be used in overviews to allow
 the user to skim the documentation in search of the required template.

Bron [Page 10]

SPEC 0001 JavaScript Styling August 2018

 5.3. Description

 The description contains concise information about the function of the
 documented element. The description MUST be in Markdown markup to apply
 styling.

 The following list has examples of types of information that can be
 contained in a description:
 - Explanation of algorithms
 - Code examples
 - Array specification
 - Relation to other elements
 - License information (in the case of file documentation)

 Descriptions can also contain inline tags. These are special annotations
 that can be substituted for a specialized type of information (such as
 {@link}). Inline tags MUST always be surrounded by braces.

Bron [Page 11]

SPEC 0001 JavaScript Styling August 2018

 5.4. Tags

 Tags represent metadata with which IDEs, external tooling or even the
 application itself know how to interpret an element.

 5.4.1. JSDoc tag reference

 The following tags are common and well supported by various
 documentation generation tools (such as JsDossier) for purely
 documentation purposes.

 Tag Description

 @author Document the author of a file or the owner of a
 @owner test, generally only used in the @fileoverview comment.
 Not recommended.

 @bug Indicates what bugs the given test function regression
 tests. Multiple bugs should each have their own @bug
 line, to make searching for regression tests as easy as
 possible.

 @see Reference a lookup to another class function or method,
 global function, file or URL.

 @param Indicates the type of a function or method parameter,
 optionally adding a description to further explain what
 the described parameter does.

 @return Indicates the return type of a function or method,
 optionally adding a description to further explain what
 the return value contains.

 @type Indicate the documented element’s type.

 @const Describes the documented element is a constant variable,
 that it MUST NOT be reassigned later.

 @private Describes the documented element is private and care MUST
 be taken to not expose the element to scopes other than
 the one it is declared in.

 @this Indicates the documented element uses the "this" keyword
 and SHOULD be handled with care in relation to it’s
 context.

 @override Indicates the documented method overrides the
 equally-named super class method.

 @deprecated Indicates the documented element is deprecated and this
 SHOULD not be used in new code.

Bron [Page 12]

SPEC 0001 JavaScript Styling August 2018

 5.5. Line wrapping

 Line-wrapped block texts MUST be indented four spaces or be aligned with
 the start of the text when it’s a comment on a tag.

 Wrapped description text SHOULD be lined up with the description on
 previous lines.

 5.6. Top/file-level comments

 A file MAY have a top-level overview. A copyright notice and author
 information are optional. File overviews are recommended whenever a file
 consists of more than a single class definition. The top level comment is
 designed to orient readers unfamiliar with the code to what is in this
 file. If present, it MAY provide a description of the file’s contents and
 any dependencies or compatibility information. Line wrapping MUST follow
 the rules defined in section 5.5.

 5.7. Class comments

 Classes, interfaces and records MUST be documented with a description and
 any template parameters, implemented interfaces and other appropriate
 tags. The class description SHOULD provide the reader with enough
 information to know how and when to use the class, as wel as any
 additional considerations necessary to correctly use the class. Textual
 descriptions MAY be omitted on the constructor.

 5.8. Enum and typedef comments

 Enums and typedefs MUST be documented. Public enums and typedefs MUST have
 a non-empty description. Individual enum items may be documented with a
 JSDoc comment on the preceding line.

 5.9. Method and function comments

 Parameter and return types MUST be documented. The "this" type should be
 documented when necessary. Method, parameter and return descriptions (but
 not types) MAY be omitted if they are obvious from the rest of the
 method’s JSDoc or from it’s signature. Method descriptions SHOULD start
 with a sentence written in the third person declarative voice (a.k.a. the
 summary).

 If a method overrides a superclass method, it must include an @override
 annotation. Overridden methods must include all @param and @return
 annotations if any types are refined, but SHOULD emit them if the types
 are all the same.

 Anonymous functions do not require JSDoc, though parameters may be
 specified inline if the automatic type inference is insufficient.

Bron [Page 13]

SPEC 0001 JavaScript Styling August 2018

 5.10. Property comments

 Property types must be documented. The description may be omitted for
 private properties, if name and type provide enough documentation for
 understanding the code.

 Publicly exported constants are commented the same way as properties.
 Explicit types may be omitted for @const properties initialized from an
 expression with an obviously known type.

 5.11. Nullability

 When defining the type of a parameter or other element, nullability SHOULD
 be indicated by either "!" or "?" as a prefix of the type for non-null and
 nullable, respectively. Primitive types are nullable by default but cannot
 be immediately distinguished from a name that is typed to a
 non-null-by-default type. As such, all types except primitives and record
 literals SHOULD be annotated explicitly with either "?" or "!" to indicate
 whether they are nullable or not.

 5.12. Template parameter types

 Whenever possible, one SHOULD specify template parameters when dealing
 with elements which by default contain other elements, such as Objects,
 Arrays or a Promise.

 Objects MUST NOT specify template parameters when used as a hierarchy
 instead of a map-like structure.

6. Policies

 6.1. Unspecified styling

 For any style question that isn’t settled definitively by this
 specification, one SHOULD follow the code style of the rest of the file.
 If that doesn’t resolve the question, consider emulating the other files
 in the same package. If that still does not resolve the question, follow
 the rules set by standardjs.

 As a rule of thumb: be consistent throughout the package.

 6.2. Deprecation

 Mark deprecated methods, classes, interfaces or functions with @deprecated
 annotations. A deprecation comment MUST include simple, clear directions
 for people to fix their call sites.

 6.3. Code not in Finwo Style

 You will occasionally encounter files in your codebase that are not in
 proper Finwo Style. These may have come from an acquisition, or may have
 been written before Finwo Style took a position on some issue, or may be
 in non-Finwo Style for any other reason.

Bron [Page 14]

SPEC 0001 JavaScript Styling August 2018

 6.3.1. Reformatting existing code

 When working on the file, only reformat the functions and/or methods
 you change instead of the whole file. If significant changes are being
 made to a file, it is expected that the file will be in Finwo Style.

 6.3.2. Newly added code

 Brand new files MUST use Finwo style, regardless of style choices of
 other files in the same package. When adding new code to a file that is
 not in Finwo Style, reformatting the existing code first is
 recommended, subject to the advice in section 6.3.1.

 If this reformatting is not done, the new code should be as consistent
 as possible with existing code in the same file, but MUST not break any
 rules of this specification.

 6.4. Local style rules

 Teams and projects may adopt additional style rules beyond those in this
 document, but must accept that cleanup changes may not abide by these
 additional rules, and must not block such cleanup changes due to violating
 any additional rules. Beware of excessive rules which serve no purpose.
 The style guide does not seek to define style in every possible scenario
 and neither should you.

 6.5. Generated code

 Source code generate by any build process is not required to be in Finwo
 Style. However, any generated identifiers that will by referenced from
 hand-written code must follow the naming requirements. As a special
 exception, such identifiers are allowed to contain underscores, which may
 help to avoid conflicts with hand-written identifiers.

 6.6. Third-party code

 This style specification does not apply to third-party code used within
 the package. When working on third-party code embedded in the package,
 section 6.3 applies.

 When working on third-party code which is not embedded in the package, you
 MUST follow the style guide supplied by that project if available.

Bron [Page 15]

SPEC 0001 JavaScript Styling August 2018

7. Informative resources

 [JSGUIDE] Google JavaScript Style Guide
 https://google.github.io/styleguide/jsguide

 [STANDARDJS] StandardJS standard style
 https://standardjs.com/rules

 [kebab-case] Special case styles
 https://en.wikipedia.org/wiki/Kebab_case

 [camel-case] Camel case
 https://en.wikipedia.org/wiki/Camel_case

 [SCREAMING_SNAKE_CASE] Snake case
 https://en.wikipedia.org/wiki/Snake_case

 [RFC20] ASCII format for Network Interchange
 Vint Cerf
 https://tools.ietf.org/html/rfc20

 [RFC2119] RFC Key Words
 S. Bradner
 https://tools.ietf.org/html/rfc2119

 [RFC3629] UTF-8
 F. Yergeau
 https://tools.ietf.org/html/rfc3629

Bron [Page 16]

SPEC 0001 JavaScript Styling August 2018

8. Author information

 Name Robin Bron
 Nickname ... Finwo
 EMail robin@finwo.nl

Bron [Page 17]

