Speci fication: 0001 Robi n Bron
August 2018

JavaScript Styling

Thi s docunent describes a set of rules for JavaScript source code. To apply
these rules, include the next paragraph near the beginning of the docunentation
of the project or near the beginning of the generic README file of the project:

The JavaScript source code in this project nust adhere to the rules as
described in FI NWO SPEC0001

Copyright Notice

Thi s docunent is |licensed under a
Creative Conmons Attribution 4.0 International License

You shoul d have received a copy of the license along with this work. If not,
see <http://creativecomons.org/licenses/by/4.0/>

Br on [Page 1]

SPEC 0001 JavaScript Styling August 2018

Tabl e of contents

1

2.

Bron

LNt rodUuCti ON .. e 4
1. 1. CONVENtIi ONS ..ttt 4
Source file basiCs e 4
2.0, Fil e name ... e 4
2.2. File encoding e 4
2.3. Special characters e 4
2.3.1. Whitespace characters 4
2.3.2. Special escape SEQUENCES v ittt e e 4
2.3.3. Non-ASCI|l charaCters e 4
FOrMBt LI NG .. e 5
3. L. BraCes .. e 5
3.1.1. Control StruUCLUINES i e e e e 5
3.1.2. Non-enpty bl ocks e 5
3.1.3. Enpty bl ocKs e 5
3.2, Indentati On e 5
3.3, String literal s e 5
3.4, Nunber literal s e e 6
3.5, Array literal s e 6
3.6. Qhject literal s e 6
3. 7. FUNCLI ONS .. 7
3.7.1. Function literals 7
3.7.2. Arrow function literals e 7
3.7.3. Generator funCtions 7
3. 7. A Par amBl Br S . o 7
3.7.4.1. Default parameters e 7
3.7.4.2. Rest paramBl @IS ... 8

3. 7. 5. RELUINS L 8
3.7.6. Spread operat Ot e 8
3.8, ASSES .ttt 8
3. 8. L. CONSEIUCE O S o e 8
3.8. 2. Fields ... 8
3.8.3. ES5 class declarations 8
3.8.4. Prototype nanipulation e 9
3.8.5. Getters and setters 9
3.9, Thi S o 9
3.10. Disallowed features e e 9
N NG . 10
4.1. Rules for all identifiers 10
4.2. Rules by identifier type i 10
JOD0C i 10
5.1, General form e 10
D 2, SUNMITAI Y . 10
5.3, DESCription ... e 11
D 4, TaAgS 12
5.4.1. JSDoc tag reference e 12
5.5, Line WappiNg ... e 13
5.6. Top/file-level COMrENtS e 13
5.7 A ass COMMEBNL S e e e e e e e e 13
5.8. Enumand typedef cONMENtS 13
5.9. Method and function CONMMENtS i, 13
5.10. Property COMMBNL S e e e 14
5.11. Nullabi ity .o 14
5.12. Tenplate paramet er tYypPesS i e e 14

SPEC 0001 JavaScript Styling August 2018
B. POl Ci BS . 14
6.1. Unspecified styling e 14

6. 2. Deprecati ON e 14

6.3. Code not in Finwo Style e 14
6.3.1. Reformatting existing code 15

6.3.2. Newy added code i e 15

6.4. Local style rules e 15

6.5. CGenerated Code 15

6.6. Third-party Code e e 15

7. InfOrmati Ve FeSOUI CES .. i e e e 16

8. Author information 17

Br on [Page 3]

SPEC 0001 JavaScript Styling August 2018
1. Introduction
Thi s docunent serves as the conplete definition of the coding standards for
source code in the JavaScript progranm ng | anguage as foll owed by finw. A

JavaScript source file is described as being in "Finwo Style" if, and only
if, it adheres to the rules herein.

Li ke other progranm ng style guides, the issues covered span not only
aesthetic issues of formatting, but other types of conventions or coding
standards as well. However, this docunent focuses primarily on the
hard-and-fast rules that we follow universally, and avoi ds giving advice that
isn't clearly enforceable (whether by human or tool).

1.1. Conventions
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT", "SHOULD"
"SHOULD NOT", "RECOWMENDED', "NOT RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC2119 when, and only when
they appear in all capitals, as shown here.

2. Source file basics
2.1. File nane

File names MJST be all |owercase and nay include underscores (_) or dashes
(-), but no additional punctuation. The extension MJST al ways be ".js".

2.2. File encoding

Source files MJST al ways be encoded according to the UTF-8 standard (See
RFC3629) .

2.3. Special characters

2.3.1 Wiitespace characters
Aside fromthe line-feed character, the ASCI| (See RFC20) horizona
space character (0x20) is the only whitespace character that appears
anywhere in a source files.

2.3.2. Special escape sequences
For any character that has a special escape sequence, that sequence
SHOULD be used rather than the correspondi ng nuneric escape sequence.
Legacy octal escapes MJUST NOT be used.

2.3.3. Non-ASClI| characters
For the remai ning non-ASClI| characters, either the actual Unicode

character or the equival ent hex or Unicode escape is used, depending
only on which nakes the code easier to read and under st and.

Br on [Page 4]

SPEC 0001 JavaScript Styling August 2018

3. Formatting

3.1. Braces

3.1.1. Control structures

Braces are REQU RED for all control structures (i.e. if, else, for, do
while, as wel as any others). The first statenent of a non-enpty bl ock
MUST begin on its own line.

Control structures SHOULD onmit braces and be witten on a single line
if the both the statement and the control structure can be kept on a
single Iine w thout wapping when it inproves readability.

3.1.2. Non-enpty bl ocks

Braces follow the Kernighan and Ritchie style ("Egyptian brackets") for
non-enpty bl ocks and bl ock-1ike structures.

- No line break before the opening brace

- Line break after the opening brace

- Line break before the closing brace

- Line break after the closing brace if that brace terninates a
statenent or the body of a function or class statenent, or a class
met hod. Specifically, there is no line break after the brace if it is
followed by "else", "catch", "while", or a comm, semicolon, or
right-prarenthesis.

3.1.3. Enpty bl ocks
An enpty bl ock or block-like construct SHOULD be cl osed i mmedi ately

after it is opened, with no characters, space, or line break in
between, unless it is part of a nmulti-block statenent.

3.2. Indentation

Each time a new bl ock or block-like construct is opened, the indent

i ncreases by two spaces. Wen the block ends, the indent returns to the
previous indent |level. The indent |evel applies to both code and coments
t hr oughout the bl ock.

3.3. String literals

Bron

Odinary string literals SHOULD be delinmted with single quotes (') and
MUST NOT span nultiple lines.

To prevent conplex string concatenation, tenplate strings (delimted with
‘) SHOULD be used. Tenplate strings (delinted with backticks (‘)) MAY span
multiple lines in which case they SHOULD adhere the indent |evel of the
encl osing block if the whitespace does not affect functionality or

i ncreases the comexity of the code

[Page 5]

SPEC 0001 JavaScript Styling August 2018

3.4. Nunber literals

Nunmbers nay be specified in decimal, hexidecinmal, octal or binary. Use

exactly "Ox", "00" and "Ob" prefixes, with | owercase characters, for hex,
octal and binary respectively. Never include a |leading zero unless it is
i medi ately foll owed by "

X", o" or " b".

3.5. Array literals

Array literals SHOULD include a trailing comma whenever there is a line
break between the final elenent and the closing bracket.

The variadic Array constructor MJST NOT be used for creating a new array,
unl ess used for allocating an enpty array of a given |ength.

Non- nuneri c properties on an array other than "length" or a Synbol MJST
NOT be used. Use a Map or (bject instead.

Array literals MAY be used on the |left-hand side of an assignnent to
perform destructuring (such as when unpacking nultiple values froma
single array or iterable). A final "rest" el ement MAY be included (with no
space between the "..." and the variabl e nane).

Destructuring MAY al so be used for function paranmeters (note that a
paraneter nane is required but ignored). Always specify "[]" as the
default value if a destructured array paraneter is optional, and provide
default values on the left hand side.

Array literals MAY include the spread operator (...) to flatten elenents
out of one or nore other iterables. The spread operator SHOULD be used

i nstead of nore awkward constructs with "Array. prototype". There is no
space after the " "

3.6. hject literals

Bron

A trailing coma SHOULD be used whenever there is a line break between the
final property and the closing brace.

Wil e the bject constructor does not have the sane problens as the Array
constructor, the Object constructor MJST NOT be used to create a new
object. Use an object literal instead.

When witing an object literal, unquoted keys and quoted keys MJUST NOT be
used.

Conput ed property nanes are all owed and are consi dered quoted keys (they
MUST NOT be mixed with non-quoted keys) unless the conputed property is a
synbol . Enum val ues nmay al so be used for conputed keys, but should not be
m xed with non-enum keys in the sane literal

Met hods SHOULD be defined on object literals using the nethod shorthand in

pl ace of a colon imediately followed by a function or arrow function
literal to be consistent with class literals.

[Page 6]

SPEC 0001 JavaScript Styling August 2018
3.7. Functions
3.7.1. Function literals
Exported top-level functions MAY be defined directly on the exports
obj ect or else declared locally and exported separately. Non-exported
functions are encouraged and shoul d not be declared private. Functions
MAY contain nested function definitions. If it is useful to give the

function a nane, it should be assigned to a |ocal const.

3.7.2. Arrow function literals

Arrow function literals SHOULD be used instead of "function" literals
whenever applicable, unless the code is easier to read and understand
when not.

The right-hand side of the arrow MJUST be either a single expression or
a block. Miltiple expressions MAY NOT be concatenated into a single
expressi on using comas when used as the only statenent of an arrow
function.

3.7.3. Generator functions

Generators enabl e a nunber of useful abstractions and MAY be used as
needed. Wien defining generator functions, attach the "*" to the
"function" keyword when present and separate it with a space fromthe
nane of the function. When using delegating yields, attach the "*" to
the "yield" keyword.

3.7.4. Paraneters
3.7.4.1. Default paraneters

Function paraneters MJST be typed with JSDoc annotations in the
JSDoc preceding the function's definition

Par aneter types MAY be specified inline, inmediately before the
paraneter nane. Inline and "@aran' type annotations MJST NOT be
m xed in the sane function definition.

Optional paraneters SHOULD be indicated by using the equal s operator
to set a default value for that paraneter, even if the default val ue
shoul d be undefined. Optional paraneters indicated by a default

val ue MUST include spaces on both sides of the equals operator, be
naned exactly like required paraneters (i.e. not prefixed), use the
"=" suffix in their JSDoc type and not use initializers that produce
observabl e side effects. Optional paraneters SHOULD cone after
required paraneters

Use default paraneter values sparingly. Prefer destructuring to

create readable APIs when there are nore than a snmall handful of
optional paraneters that do not have a natural order

Br on [Page 7]

SPEC 0001 JavaScript Styling August 2018
3.7.4.2. Rest paraneters

Use a rest paraneter instead of accessing the special argunents

vari abl e. Rest paraneters are typed with a "..." prefix in their
JSDoc. The rest paraneter MJST be the | ast paraneter in the list.
There is no space between the "..." and the paraneter nanme. The rest
paraneter MUST NOT be naned "argunents" or any other word which
confusingly shadows built-in nanes.

3.7.5. Returns

Function return types MJST be specified in the JSDoc directly above the
function definition

3.7.6. Spread operator
Function calls MAY use the spread operator. The spread operator SHOULD
be used in preference over Function.prototype.apply when an array or
iterable is unpacked into nultiple paraneters of a variadic function
There MUST NOT be a space between the spread operator and the array or
iterable.

3.8. dasses

3.8.1. Constructors
Constructors are OPTIONAL for concrete classes. Subclass constructors
MUST call "super()" before setting any fields or otherw se accessing
"this", unless required to do so in order to acquite their goal

3.8.2. Fields
Al'l of a concrete object’s fields (i.e. all properties other than
nmet hods) MUST be set fromw thin the constructor. Fields that are never

reassi gned SHOULD be annotated with "@onst".

Private fields SHOULD either be annotated with "@rivate" or have a
Synbol as key. Fields MJUST NOT be set on a concrete class’ prototype.

3.8.3. ES5 class decl arati ons

Wil e ES6 classes are preferred, there are cases where ES6 cl asses nay
not be feasible.

Per-instance properties SHOULD be defined in the constructor after the

call to the super class constructor, if a super class exists. Mthods
SHOULD be defined on the prototype of the constructor

Br on [Page 8]

SPEC 0001 JavaScript Styling August 2018

3.8.4. Prototype nanipul ation

In ES6 class definitions, the prototype of the class SHOULD NOT be
mani pul ated directly. Odinary inplenentati on code has no busi ness
mani pul ati ng these obj ects.

M xi ns and nodifications of the prototypes of builtin objects SHALL NOT
be used, unless part of framework code which otherwi se would resort to
even-wor se wor karounds to avoid doi ng so.

3.8.5. Getters and setters

The JavaScript getter and setter properties MJST NOT be used, unless
part of data-binding frameworks where they MAY be used sparingly.

3.9. This

Only use the this builtin in class constructors and nethods, or in arrow
functions defined within class constructors and nethods. Any other uses of
this MJST have an explicit "@his" declared in the i medi atel y-encl osi ng
function’s JSDoc.

The this builtin SHOULD NOT be used to refer to the gl obal object, the
context of an eval or the target of an event.

3.10. Disall owed features

The "with" keyword
The "with" keyword MUST NOT be used. It nakes your code harder to
under st and and has been banned in strict node since ES5.

Dynani ¢ code eval uation
The "eval " nethod and the "Function(...string)" constructor MJST NOT be

used outside of code | oaders. These features are potentially dangerous
and sinply do not work in CSP environnents.

Aut omat i ¢ semicol on insertion
Always termnate statenents with senicol ons, except for function and

cl ass decl arati ons.

Non- st andard features
Non- st andard features MJUST NOT be used. This includes old features that
have been renoved, new features that are not yet standardized or
proprietary that are only inplenented in some JavaScri pt environnments.
These features are only allowed if the code being witten is intended
for only that environnent.

W apper objects for primtive types
Never use the "new' keyword on prinitive object wappers nor include
themin type annotations. The wrappers MAY be called as functions for
coercing (which is preferred over using "+" or concatenating the enpty
string) or creating Synbols.

Br on [Page 9]

SPEC 0001 JavaScript Styling August 2018

4. Nam ng

4.1. Rules for all identifiers

Identifiers MJST use only ASCI| letters, digits, underscores and the
dol I ar sign.

G ve as descriptive a nane as possible, within reason. Do not worry about
saving horizontal space as it is far nore inportant to make your code

i medi at el y under st andabl e by a new reader. Do not use abbreviations that
are anbi guous or unfamliar to readers outside your project and do not
abbreviate by deleting letters within a word.

4.2. Rules by identifier type

Package NamBs kebab- case
A ASS NAMES ..ttt e e e e Upper Canel Case
Method names | ower Canel Case
ENUM NamBS . . Upper Canel Case
Constant NamBS SCREAM NG_SNAKE_CASE
Non-constant field nanes | ower Canel Case
Paramet € NaAMESot e | ower Canel Case
Local variable names e | ower Canel Case
Tenpl ate parameter NaMES, SCREAM NG_SNAKE_CASE
5. JSDoc

5.1. General form

5.

Bron

JSDoc is a generic docblock (/**) with a body as defined here. JSDoc is
either nmulti-line or single-line, where the single-line version MJST
follow the paraneter or field section of the nulti-line version

There are nmany tools which extract netadata from JSDoc comments to perform
code validation and optim zation. As such, these conments MJST be
wel | - f or ned.

A JSDoc comment can contain the follow ng sections, which are described in
5.2. through 5.4.:
- Sunmmary
Descri ption
- Tags

2. Sunmary
The sunmary is a one-line string used to give an inpression of the

function of the docunented el enment. This can be used in overviews to all ow
the user to skimthe docunentation in search of the required tenplate.

[Page 10]

SPEC 0001 JavaScript Styling August 2018

5.3. Description

The description contains concise informati on about the function of the
docunent ed el enent. The description MJST be in Markdown markup to apply
styling.

The following Iist has exanples of types of infornmation that can be
contained in a description

- Explanation of algorithns

- Code exanpl es

- Array specification

- Relation to other elenents

- License information (in the case of file docunentation)

Descriptions can also contain inline tags. These are special annotations

that can be substituted for a specialized type of information (such as
{@ink}). Inline tags MJUST al ways be surrounded by braces.

Br on [Page 11]

SPEC 0001 JavaScript Styling August 2018
5.4. Tags

Tags represent netadata with which I DEs, external tooling or even the
application itself know how to interpret an el enent.

5.4.1. JSDoc tag reference

Bron

The followi ng tags are common and wel | supported by various
docunent ati on generation tools (such as JsDossier) for purely
docunent ati on pur poses.

Tag Descri ption

@ut hor Docunent the author of a file or the owner of a

@wner test, generally only used in the @il eovervi ew coment.
Not recomended.

@ug I ndi cat es what bugs the given test function regression
tests. Miltiple bugs should each have their own @ug
line, to make searching for regression tests as easy as
possi bl e.

Gee Ref erence a | ookup to another class function or nethod,
gl obal function, file or URL.

@ar am I ndicates the type of a function or nethod paraneter,
optionally adding a description to further explain what
t he descri bed paraneter does.

@eturn I ndicates the return type of a function or nethod
optionally adding a description to further explain what
the return val ue contains.

@ype I ndi cate the docunented el enent’s type

@onst Descri bes the docunented el enent is a constant variable
that it MJST NOT be reassigned |ater

@rivate Descri bes the docunented elenent is private and care MJST
be taken to not expose the elenent to scopes other than
the one it is declared in.

@hi s I ndi cates the docunented el ement uses the "this" keyword
and SHOULD be handled with care in relation to it’s
cont ext .

@verride I ndi cates the docunented met hod overrides the

@lepr ecat ed

equal | y-named super class net hod.

I ndi cates the docunented el enment is deprecated and this
SHOULD not be used in new code.

[Page 12]

SPEC 0001 JavaScript Styling August 2018
5.5. Line wapping

Li ne-w apped bl ock texts MJUST be indented four spaces or be aligned with
the start of the text when it’s a comment on a tag.

W apped description text SHOULD be lined up with the description on
previous lines.

5.6. Top/file-level coments

A file MAY have a top-level overview. A copyright notice and author
information are optional. File overviews are recomended whenever a file
consists of nore than a single class definition. The top |level comment is
designed to orient readers unfamliar with the code to what is in this
file. If present, it MAY provide a description of the file's contents and
any dependencies or conpatibility information. Line wapping MIST foll ow
the rules defined in section 5.5.

5.7. Class comments

O asses, interfaces and records MJUST be docunented with a description and
any tenplate paraneters, inplenented interfaces and other appropriate
tags. The cl ass description SHOULD provide the reader with enough

i nformati on to know how and when to use the class, as wel as any
addi ti onal considerations necessary to correctly use the class. Textua
descriptions MAY be omitted on the constructor.

5.8. Enum and typedef comments

Enuns and typedefs MJST be docunented. Public enuns and typedefs MJUST have
a non-enpty description. Individual enumitens nmay be docunented with a
JSDoc comment on the preceding line.

5.9. Method and function coments

Paraneter and return types MJST be docunented. The "this" type should be
docunent ed when necessary. Method, paraneter and return descriptions (but
not types) MAY be onitted if they are obvious fromthe rest of the

met hod’s JSDoc or fromit’'s signature. Method descriptions SHOULD start
with a sentence witten in the third person declarative voice (a.k.a. the
sunmary) .

If a nethod overrides a superclass nethod, it nust include an @uverride
annot ati on. Overridden nethods nust include all @aramand @eturn
annotations if any types are refined, but SHOULD enit themif the types
are all the sane.

Anonynous functions do not require JSDoc, though paraneters may be
specified inline if the automatic type inference is insufficient.

Br on [Page 13]

SPEC 0001 JavaScript Styling August 2018

5.10. Property comments

Property types nust be docunented. The description nay be omtted for
private properties, if nane and type provide enough docunentation for
under st andi ng t he code.

Publicly exported constants are commented the same way as properties.
Explicit types may be onmitted for @onst properties initialized froman
expression with an obviously known type.

5.11. Nullability

When defining the type of a paraneter or other elenent, nullability SHOULD
be indicated by either "!" or "?" as a prefix of the type for non-null and
nul |l abl e, respectively. Primtive types are nullable by default but cannot
be i medi ately distinguished froma nane that is typed to a
non-nul | -by-default type. As such, all types except prinitives and record
literals SHOULD be annotated explicitly with either "?" or "!" to indicate
whet her they are nullable or not.

5.12. Tenpl ate paraneter types

Whenever possi bl e, one SHOULD specify tenpl ate paraneters when dealing
with el enents which by default contain other elenents, such as bjects,
Arrays or a Proni se.

bj ects MUST NOT specify tenplate paraneters when used as a hierarchy
i nstead of a map-like structure.

6. Policies

6.1. Unspecified styling

For any style question that isn't settled definitively by this
specification, one SHOULD follow the code style of the rest of the file.
If that doesn’t resolve the question, consider enulating the other files
in the same package. If that still does not resolve the question, follow
the rules set by standardjs.

As a rule of thunb: be consistent throughout the package.

6.2. Deprecation

Mar k deprecated nethods, classes, interfaces or functions with @leprecated
annot ati ons. A deprecation comment MJUST include sinple, clear directions
for people to fix their call sites.

6.3. Code not in Finwo Style

Bron

You will occasionally encounter files in your codebase that are not in
proper Finwo Style. These nay have cone from an acquisition, or may have
been written before Finwo Style took a position on sone issue, or nay be
in non-Finwo Style for any other reason

[Page 14]

SPEC 0001 JavaScript Styling August 2018
6.3.1. Reformatting existing code

When working on the file, only reformat the functions and/or nethods
you change instead of the whole file. If significant changes are being
made to a file, it is expected that the file will be in Finw Style.

6.3.2. Newly added code

Brand new files MJUST use Finwo style, regardl ess of style choices of
other files in the sane package. Wen addi ng new code to a file that is
not in Finwo Style, reformatting the existing code first is
recommended, subject to the advice in section 6.3.1.

If this reformatting is not done, the new code should be as consi stent
as possible with existing code in the sane file, but MJST not break any
rules of this specification

6.4. Local style rules

Teans and projects nay adopt additional style rules beyond those in this
docunent, but nust accept that cl eanup changes may not abi de by these
additional rules, and nust not block such cleanup changes due to violating
any additional rules. Beware of excessive rules which serve no purpose.
The style guide does not seek to define style in every possible scenario
and neither should you.

6.5. Generated code

Source code generate by any build process is not required to be in Finwo
Style. However, any generated identifiers that will by referenced from
hand-written code nust follow the nami ng requirenments. As a special
exception, such identifiers are allowed to contain underscores, which may
help to avoid conflicts with hand-witten identifiers.

6.6. Third-party code
This style specification does not apply to third-party code used within
t he package. When working on third-party code enbedded in the package,

section 6.3 applies.

When working on third-party code which is not enbedded in the package, you
MUST follow the style guide supplied by that project if avail able.

Br on [Page 15]

SPEC 0001
7. Informative resources

[JSGUI DE]

[STANDARDIJ S]

[kebab- case]

[canel - case]

[SCREAM NG_SNAKE_CASE]

[RFC20]

[RFC2119]

[RFC3629]

Bron

JavaScript Styling August

Googl e JavaScript Style Quide
htt ps://googl e. gi thub. i o/ styl egui de/ j sgui de

St andar dJS standard style
https://standardjs.confrul es

Speci al case styles
https://en.w ki pedi a. org/ wi ki / Kebab_case

Canel case
https://en.w ki pedi a. org/ wi ki / Canel _case

Snake case
https://en.w ki pedi a. or g/ wi ki / Snake_case

ASCI| format for Network Interchange
Vint Cerf
https://tools.ietf.org/htm/rfc20

RFC Key Wbrds
S. Bradner
https://tools.ietf.org/htm/rfc2119

UTF- 8
F. Yergeau
https://tools.ietf.org/htm/rfc3629

2018

[Page 16]

SPEC 0001 JavaScript Styling August 2018

8. Author information

Name Robi n Bron

Ni cknane ... Finwo

EMBil robi n@i nwo. nl
Bron

[Page 17]

